
gnpy Documentation

Telecom Infra Project - OOPT PSE Group

Jun 06, 2021

CONTENTS

1 Introduction 3
1.1 Further Instructions for Use . 3

2 Simulating networks with GNPy 5
2.1 Network Topology . 5

2.1.1 Fully Specified vs. Partially Designed Networks . 5
2.2 The Equipment Library . 9

2.2.1 Amplifier Noise Figure Models . 9
2.2.1.1 Min-max NF . 9
2.2.1.2 Raman Approximation . 10

2.3 Simulation . 10

3 Installing GNPy 11
3.1 Using prebuilt Docker images . 11
3.2 Using Python on your computer . 11

3.2.1 Installing the Python package . 12

4 JSON Input Files 13
4.1 Equipment Library . 13

4.1.1 EDFA . 13
4.1.2 Fiber . 14
4.1.3 Transceiver . 14
4.1.4 ROADM . 15

4.2 Global parameters . 16
4.2.1 Span . 16
4.2.2 SpectralInformation . 18

5 Excel (XLS, XLSX) input files 19
5.1 Nodes sheet . 19
5.2 Links sheet . 20
5.3 Eqpt sheet . 21
5.4 Service sheet . 22

6 Extending GNPy with vendor-specific data 25
6.1 EDFAs . 25

6.1.1 Polynomial NF . 25
6.1.2 Polynomial OSNR (OpenROADM-style for inline amplifier) 25
6.1.3 Noise mask (OpenROADM-style for combined preamp and booster) 26
6.1.4 Min-max NF . 26
6.1.5 Dual-stage . 26
6.1.6 Advanced Specification . 26

i

6.2 Raman Amplifiers . 26
6.3 Transponders . 27
6.4 ROADMs . 27

7 About the project 29
7.1 Contributing . 29
7.2 Project Background . 29
7.3 TIP OOPT/PSE & PSE WG Charter . 30
7.4 License . 30

8 Physical Model used in GNPy 31
8.1 QoT-E including ASE noise and NLI accumulation . 31
8.2 The Gaussian Noise Model to evaluate the NLI . 32

9 API Reference Documentation 33
9.1 gnpy package . 33

9.1.1 gnpy.core . 33
9.1.1.1 gnpy.core.ansi_escapes . 33
9.1.1.2 gnpy.core.exceptions . 33

9.1.2 gnpy.topology . 34
9.1.3 gnpy.tools . 34

10 Indices and tables 35

Bibliography 37

Python Module Index 39

Index 41

ii

gnpy Documentation

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-
world mesh optical networks. It is based on the Gaussian Noise Model.

CONTENTS 1

http://github.com/telecominfraproject/gnpy

gnpy Documentation

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

gnpy is a library for building route planning and optimization tools.

It ships with a number of example programs. Release versions will ship with fully-functional programs.

Note: If you are a network operator or involved in route planning and optimization for your organization,
please contact project maintainer Jan Kundrát <jan.kundrat@telecominfraproject.com>. gnpy is looking
for users with specific, delineated use cases to drive requirements for future development.

This example demonstrates how GNPy can be used to check the expected SNR at the end of the line by varying the
channel input power:

By default, this script operates on a single span network defined in gnpy/example-data/edfa_example_network.json

You can specify a different network at the command line as follows. For example, to use the CORONET Global
network defined in gnpy/example-data/CORONET_Global_Topology.json:

$ gnpy-transmission-example $(gnpy-example-data)/CORONET_Global_Topology.json

It is also possible to use an Excel file input (for example gnpy/example-data/CORONET_Global_Topology.xls). The
Excel file will be processed into a JSON file with the same prefix. Further details about the Excel data structure are
available in the documentation.

The main transmission example will calculate the average signal OSNR and SNR across network elements (transceiver,
ROADMs, fibers, and amplifiers) between two transceivers selected by the user. Additional details are provided by
doing gnpy-transmission-example -h. (By default, for the CORONET Global network, it will show the
transmission of spectral information between Abilene and Albany)

This script calculates the average signal OSNR = Pch/Pase and SNR = Pch/(Pnli+Pase).

Pase is the amplified spontaneous emission noise, and Pnli the non-linear interference noise.

1.1 Further Instructions for Use

Simulations are driven by a set of JSON or XLS files.

The gnpy-transmission-example script propagates a spectrum of channels at 32 Gbaud, 50 GHz spacing and
0 dBm/channel. Launch power can be overridden by using the --power argument. Spectrum information is not
yet parametrized but can be modified directly in the eqpt_config.json (via the SpectralInformation -SI-
structure) to accommodate any baud rate or spacing. The number of channel is computed based on spacing and
f_min, f_max values.

An experimental support for Raman amplification is available:

3

https://asciinema.org/a/252295
gnpy/example-data/edfa_example_network.json
gnpy/example-data/CORONET_Global_Topology.json
gnpy/example-data/CORONET_Global_Topology.xls
docs/excel.rst
docs/json.rst
docs/excel.rst

gnpy Documentation

$ gnpy-transmission-example \
$(gnpy-example-data)/raman_edfa_example_network.json \
--sim $(gnpy-example-data)/sim_params.json --show-channels

Configuration of Raman pumps (their frequencies, power and pumping direction) is done via the RamanFiber element
in the network topology. General numeric parameters for simulation control are provided in the gnpy/example-data/
sim_params.json.

Use gnpy-path-request to request several paths at once:

$ cd $(gnpy-example-data)
$ gnpy-path-request -o output_file.json \
meshTopologyExampleV2.xls meshTopologyExampleV2_services.json

This program operates on a network topology (JSON or Excel format), processing the list of service requests (JSON
or XLS again). The service requests and reply formats are based on the draft-ietf-teas-yang-path-computation-01
with custom extensions (e.g., for transponder modes). An example of the JSON input is provided in file service-
template.json, while results are shown in path_result_template.json.

Important note: gnpy-path-request is not a network dimensionning tool: each service does not reserve spec-
trum, or occupy ressources such as transponders. It only computes path feasibility assuming the spectrum (between
defined frequencies) is loaded with “nb of channels” spaced by “spacing” values as specified in the system parameters
input in the service file, each cannel having the same characteristics in terms of baudrate, format,. . . as the service
transponder. The transceiver element acts as a “logical starting/stopping point” for the spectral information propaga-
tion. At that point it is not meant to represent the capacity of add drop ports. As a result transponder type is not part
of the network info. it is related to the list of services requests.

The current version includes a spectrum assigment features that enables to compute a candidate spectrum assign-
ment for each service based on a first fit policy. Spectrum is assigned based on service specified spacing value,
path_bandwidth value and selected mode for the transceiver. This spectrum assignment includes a basic capacity plan-
ning capability so that the spectrum resource is limited by the frequency min and max values defined for the links.
If the requested services reach the link spectrum capacity, additional services feasibility are computed but marked as
blocked due to spectrum reason.

OpenROADM networks can be simulated via gnpy/example-data/eqpt_config_openroadm.json – see
gnpy/example-data/Sweden_OpenROADM_example_network.json as an example.

4 Chapter 1. Introduction

gnpy/example-data/raman_edfa_example_network.json
gnpy/example-data/raman_edfa_example_network.json
gnpy/example-data/sim_params.json
gnpy/example-data/sim_params.json
docs/json.rst
docs/excel.rst
https://tools.ietf.org/html/draft-ietf-teas-yang-path-computation-01

CHAPTER

TWO

SIMULATING NETWORKS WITH GNPY

Running simulations with GNPy requires three pieces of information:

• the network topology, which describes how the network looks like, what are the fiber lengths, what amplifiers
are used, etc.,

• the equipment library, which holds machine-readable datasheets of the equipment used in the network,

• the simulation options holding instructions about what to simulate, and under which conditions.

2.1 Network Topology

The topology acts as a “digital self” of the simulated network. When given a network topology, GNPy can either run
a specific simulation as-is, or it can optimize the topology before performing the simulation.

A network topology for GNPy is often a generic, mesh network. This enables GNPy to take into consideration
the current spectrum allocation as well as availability and resiliency considerations. When the time comes to run a
particular propagation of a signal and its impairments are computed, though, a linear path through the network is used.
For this purpose, the path through the network refers to an ordered, acyclic sequence of nodes that are processed. This
path is directional, and all “GNPy elements” along the path match the unidirectional part of a real-world network
equipment.

Note: In practical terms, an amplifier in GNPy refers to an entity with a single input port and a single output port. A
real-world inline EDFA enclosed in a single chassis will be therefore represented as two GNPy-level amplifiers.

The network topology contains not just the physical topology of the network, but also references to the equipment
library and a set of operating parameters for each entity. These parameters include the fiber length of each fiber, the
connector attenutation losses, or an amplifier’s specific gain setting.

2.1.1 Fully Specified vs. Partially Designed Networks

Let’s consider a simple triangle topology with three POPS (Points of Presence) covering three cities:

5

gnpy Documentation

A B

C

In the real world, each city would probably host a ROADM and some transponders:

ROADM A ROADM B

ROADM C

Transponder A Transponder B

Transponder C

GNPy simulation works by propagating the optical signal over a sequence of elements, which means that one has to
add some preamplifiers and boosters. The amplifiers are, by definition, unidirectional, so the graph becomes quite
complex:

6 Chapter 2. Simulating networks with GNPy

gnpy Documentation

ROADM A

Transponder A
Booster A B

ROADM B

Transponder B

Booster B A

ROADM C

Transponder C

Preamp B A

 Preamp A B

In many regions, the ROADMs are not placed physically close to each other, so the long-haul fiber links (OMS
(Optical Multiplex Section)) are split into individual spans (OTS (Optical Transport Section)) by in-line amplifiers,
resulting in an even more complicated topology graphs:

2.1. Network Topology 7

gnpy Documentation

ROADM A

Transponder A

ROADM B

Transponder B

ROADM C

Transponder C

 Inline A C 1

 Inline A C 2

 Inline A C 3

 Inline A C n

In such networks, GNPy’s autodesign features becomes very useful. It is possible to connect ROADMs via “tentative
links” which will be replaced by a sequence of actual fibers and specific amplifiers. In other cases where the location
of amplifier huts is already known, but the specific EDFA models have not yet been decided, one can put in amplifier
placeholders and let GNPy assign the best amplifier.

8 Chapter 2. Simulating networks with GNPy

gnpy Documentation

2.2 The Equipment Library

In order to produce an accurate simulation, GNPy needs to know the physical properties of each entity which affects
the optical signal. Entries in the equipment library correspond to actual real-world, tangible entities. Unlike a typical
NMS (Network Management System), GNPy considers not just the active NES (Network Elements) such as amplifiers
and ROADMS (Reconfigurable Optical Add/Drop Multiplexers), but also the passive ones, such as the optical fiber.

As the signal propagates through the network, the largest source of optical impairments is the noise introduced from
amplifiers. An accurate description of the EDFA (Erbium-Doped Fiber Amplifier) and especially its noise character-
istics is required. GNPy describes this property in terms of the Noise Figure (NF) of an amplifier model as a function
of its operating point.

The amplifiers compensate power losses induced on the signal in the optical fiber. The linear losses, however, are just
one phenomenon of a multitude of effects that affect the signals in a long fiber run. While a more detailed description
is available in the literature, for the purpose of the equipment library, the description of the optical fiber comprises its
linear attenutation coefficient, a set of parameters for the Raman effect, optical dispersion, etc.

Signals are introduced into the network via transponders. The set of parameters that are required describe the physical
properties of each supported mode of the transponder, including its symbol rate, spectral width, etc.

In the junctions of the network, ROADMs are used for spectrum routing. GNPy currently does not take into con-
sideration the spectrum filtering penalties of the WSSES (Wavelength Selective Switches), but the equipment library
nonetheless contains a list of required parameters, such as the attenuation options, so that the network can be properly
simulated.

2.2.1 Amplifier Noise Figure Models

One of the key parameters of an amplifier is the method to use for computing the Noise Figure (NF). GNPy supports
several different noise models with varying level of accuracy. When in doubt, contact your vendor’s technical support
and ask them to contribute their equipment descriptions to GNPy.

The most accurate noise models describe the resulting NF of an EDFA as a third-degree polynomial. GNPy under-
stands polynomials as a NF-yielding function of the gain difference from the optimal gain, or as a function of the input
power resulting in an incremental OSNR as used in OpenROADM inline amplifiers and OpenROADM booster/preamps
in the ROADMs. For scenarios where the vendor has not yet contributed an accurate EDFA NF description to GNPy,
it is possible to approximate the characteristics via an operator-focused, min-max NF model.

2.2.1.1 Min-max NF

This is an operator-focused model where performance is defined by the minimal and maximal NF. These are especially
suited to model a dual-coil EDFA with a VOA in between. In these amplifiers, the minimal NF is achieved when the
EDFA operates at its maximal (and usually optimal, in terms of flatness) gain. The worst (maximal) NF applies when
the EDFA operates at its minimal gain.

This model is suitable for use when the vendor has not provided a more accurate performance description of the EDFA.

2.2. The Equipment Library 9

gnpy Documentation

2.2.1.2 Raman Approximation

While GNPy is fully Raman-aware, under certain scenarios it is useful to be able to run a simulation without an
accurate Raman description. For these purposes the polynomial NF model with a = b = c = 0, and d = 𝑁𝐹 can be
used.

2.3 Simulation

When the network model has been instantiated and the physical properties and operational settings of the actual
physical devices are known, GNPy can start simulating how the signal propagate through the optical fiber.

This set of input parameters include options such as the spectrum allocation, i.e., the number of channels and their
spacing. Various strategies for network optimization can be provided as well.

10 Chapter 2. Simulating networks with GNPy

CHAPTER

THREE

INSTALLING GNPY

There are several methods on how to obtain GNPy. The easiest option for a non-developer is probably going via
our Docker images. Developers are encouraged to install the Python package in the same way as any other Python
package. Note that this needs a working installation of Python, for example via Anaconda.

3.1 Using prebuilt Docker images

Our Docker images contain everything needed to run all examples from this guide. Docker transparently fetches the
image over the network upon first use. On Linux and Mac, run:

$ docker run -it --rm --volume $(pwd):/shared telecominfraproject/oopt-gnpy
root@bea050f186f7:/shared/example-data#

On Windows, launch from Powershell as:

PS C:\> docker run -it --rm --volume ${PWD}:/shared telecominfraproject/oopt-gnpy
root@89784e577d44:/shared/example-data#

In both cases, a directory named example-data/ will appear in your current working directory. GNPy automati-
callly populates it with example files from the current release. Remove that directory if you want to start from scratch.

3.2 Using Python on your computer

Note: gnpy supports Python 3 only. Python 2 is not supported. gnpy requires Python 3.6

Note: the gnpy maintainers strongly recommend the use of Anaconda for managing dependencies.

It is recommended that you use a “virtual environment” when installing gnpy. Do not install gnpy on your system
Python.

We recommend the use of the Anaconda Python distribution which comes with many scientific computing dependen-
cies pre-installed. Anaconda creates a base “virtual environment” for you automatically. You can also create and man-
age your conda “virtual environments” yourself (see: https://conda.io/docs/user-guide/tasks/manage-environments.
html)

To activate your Anaconda virtual environment, you may need to do the following:

$ source /path/to/anaconda/bin/activate # activate Anaconda base environment
(base) $ # note the change to the prompt

You can check which Anaconda environment you are using with:

11

https://hub.docker.com/r/telecominfraproject/oopt-gnpy
https://www.anaconda.com/download
https://conda.io/docs/user-guide/tasks/manage-environments.html
https://conda.io/docs/user-guide/tasks/manage-environments.html

gnpy Documentation

(base) $ conda env list # list all environments
conda environments:
#
base * /src/install/anaconda3

(base) $ echo $CONDA_DEFAULT_ENV # show default environment
base

You can check your version of Python with the following. If you are using Anaconda’s Python 3, you should see
similar output as below. Your results may be slightly different depending on your Anaconda installation path and the
exact version of Python you are using.

$ which python # check which Python executable is used
/path/to/anaconda/bin/python
$ python -V # check your Python version
Python 3.6.5 :: Anaconda, Inc.

3.2.1 Installing the Python package

From within your Anaconda Python 3 environment, you can clone the master branch of the gnpy repo and install it
with:

$ git clone https://github.com/Telecominfraproject/oopt-gnpy # clone the repo
$ cd oopt-gnpy
$ pip install --editable . # note the trailing dot

To test that gnpy was successfully installed, you can run this command. If it executes without a
ModuleNotFoundError, you have successfully installed gnpy.

$ python -c 'import gnpy' # attempt to import gnpy

$ pytest # run tests

12 Chapter 3. Installing GNPy

CHAPTER

FOUR

JSON INPUT FILES

GNPy uses a set of JSON files for modeling the network. Some data (such as network topology or the service requests)
can be also passed via XLS files.

4.1 Equipment Library

Design and transmission parameters are defined in a dedicated json file. By default, this information is read from
gnpy/example-data/eqpt_config.json. This file defines the equipment libraries that can be customized (EDFAs, fibers,
and transceivers).

It also defines the simulation parameters (spans, ROADMs, and the spectral information to transmit.)

4.1.1 EDFA

The EDFA equipment library is a list of supported amplifiers. New amplifiers can be added and existing ones removed.
Three different noise models are available:

1. 'type_def': 'variable_gain' is a simplified model simulating a 2-coil EDFA with internal, input
and output VOAs. The NF vs gain response is calculated accordingly based on the input parameters: nf_min,
nf_max, and gain_flatmax. It is not a simple interpolation but a 2-stage NF calculation.

2. 'type_def': 'fixed_gain' is a fixed gain model. NF == Cte == nf0 if gain_min < gain <
gain_flatmax

3. 'type_def': 'openroadm' models the incremental OSNR contribution as a function of input power.
It is suitable for inline amplifiers that conform to the OpenROADM specification. The input parameters are
coefficients of the third-degree polynomial.

4. 'type_def': 'openroadm_preamp' and openroadm_booster approximate the preamp and
booster within an OpenROADM network. No extra parameters specific to the NF model are accepted.

5. 'type_def': 'advanced_model' is an advanced model. A detailed JSON configuration file is re-
quired (by default gnpy/example-data/std_medium_gain_advanced_config.json). It uses a 3rd order polynomial
where NF = f(gain), NF_ripple = f(frequency), gain_ripple = f(frequency), N-array dgt = f(frequency). Com-
pared to the previous models, NF ripple and gain ripple are modelled.

For all amplifier models:

13

https://github.com/Telecominfraproject/oopt-gnpy/blob/master/gnpy/example-data/eqpt_config.json
https://github.com/Telecominfraproject/oopt-gnpy/blob/master/gnpy/example-data/std_medium_gain_advanced_config.json

gnpy Documentation

field type description
type_variety(string) a unique name to ID the amplifier in the JSON/Excel template topology input file
out_voa_auto(boolean)auto_design feature to optimize the amplifier output VOA. If true, output VOA is present

and will be used to push amplifier gain to its maximum, within EOL power margins.
allowed_for_design(boolean)If false, the amplifier will not be picked by auto-design but it can still be used as a manual

input (from JSON or Excel template topology files.)

4.1.2 Fiber

The fiber library currently describes SSMF and NZDF but additional fiber types can be entered by the user following
the same model:

field type description
type_variety (string) a unique name to ID the fiber in the JSON or Excel template topology input

file
dispersion (num-

ber)
In 𝑠×𝑚−1 ×𝑚−1.

dispersion_slope (num-
ber)

In 𝑠×𝑚−1 ×𝑚−1 ×𝑚−1

gamma (num-
ber)

2𝜋 × 𝑛2/(𝜆 *𝐴𝑒𝑓𝑓), in 𝑤−1 ×𝑚−1.

pmd_coef (num-
ber)

Polarization mode dispersion (PMD) coefficient. In 𝑠×
√
𝑚

−1.

4.1.3 Transceiver

The transceiver equipment library is a list of supported transceivers. New transceivers can be added and exist-
ing ones removed at will by the user. It is used to determine the service list path feasibility when running the
gnpy-path-request script.

field type description
type_variety(string) A unique name to ID the transceiver in the JSON or Excel template topology input file
frequency(num-

ber)
Min/max central channel frequency.

mode (num-
ber)

A list of modes supported by the transponder. New modes can be added at will by the user.
The modes are specific to each transponder type_variety. Each mode is described as below.

The modes are defined as follows:

14 Chapter 4. JSON Input Files

gnpy Documentation

field type description
format (string) a unique name to ID the mode
baud_rate (num-

ber)
in Hz

OSNR (num-
ber)

min required OSNR in 0.1nm (dB)

bit_rate (num-
ber)

in bit/s

roll_off (num-
ber)

Pure number between 0 and 1. TX signal roll-off shape. Used by Raman-aware simula-
tion code.

tx_osnr (num-
ber)

In dB. OSNR out from transponder.

cost (num-
ber)

Arbitrary unit

4.1.4 ROADM

The user can only modify the value of existing parameters:

field type description
target_pch_out_db (number) Auto-design sets the ROADM

egress channel power. This reflects
typical control loop algorithms
that adjust ROADM losses to
equalize channels (eg coming from
different ingress direction or add
ports) This is the default value
Roadm/params/target_pch_out_db
if no value is given in the Roadm el-
ement in the topology input descrip-
tion. This default value is ignored if
a params/target_pch_out_db value
is input in the topology for a given
ROADM.

add_drop_osnr (number) OSNR contribution from the
add/drop ports

pmd (number) Polarization mode dispersion
(PMD). (s)

restrictions
(dict of strings)

If non-empty, keys
preamp_variety_list and
booster_variety_list rep-
resent list of type_variety
amplifiers which are allowed for
auto-design within ROADM’s line
degrees.
If no booster should be placed on a
degree, insert a Fused node on the
degree output.

4.1. Equipment Library 15

gnpy Documentation

4.2 Global parameters

The following options are still defined in eqpt_config.json for legacy reasons, but they do not correspond to
tangible network devices.

Auto-design automatically creates EDFA amplifier network elements when they are missing, after a fiber, or between
a ROADM and a fiber. This auto-design functionality can be manually and locally deactivated by introducing a
Fused network element after a Fiber or a Roadm that doesn’t need amplification. The amplifier is chosen in
the EDFA list of the equipment library based on gain, power, and NF criteria. Only the EDFA that are marked
'allowed_for_design': true are considered.

For amplifiers defined in the topology JSON input but whose gain = 0 (placeholder), auto-design will set its gain
automatically: see power_mode in the Spans library to find out how the gain is calculated.

4.2.1 Span

Span configuration is not a list (which may change in later releases) and the user can only modify the value of existing
parameters:

16 Chapter 4. JSON Input Files

gnpy Documentation

field type description
power_mode(boolean)If false, gain mode. Auto-design sets amplifier gain = preceding span loss, unless the amplifier

exists and its gain > 0 in the topology input JSON. If true, power mode (recommended for auto-
design and power sweep.) Auto-design sets amplifier power according to delta_power_range. If
the amplifier exists with gain > 0 in the topology JSON input, then its gain is translated into a
power target/channel. Moreover, when performing a power sweep (see power_range_db in the SI
configuration library) the power sweep is performed w/r/t this power target, regardless of preceding
amplifiers power saturation/limitations.

delta_power_range_db(num-
ber)

Auto-design only, power-mode only. Specifies the [min, max, step] power excursion/span. It is a
relative power excursion w/r/t the power_dbm + power_range_db (power sweep if applicable) defined
in the SI configuration library. This relative power excursion is = 1/3 of the span loss difference with
the reference 20 dB span. The 1/3 slope is derived from the GN model equations. For example, a 23
dB span loss will be set to 1 dB more power than a 20 dB span loss. The 20 dB reference spans will
always be set to power = power_dbm + power_range_db. To configure the same power in all spans,
use [0, 0, 0]. All spans will be set to power = power_dbm + power_range_db. To configure the same
power in all spans and 3 dB more power just for the longest spans: [0, 3, 3]. The longest spans are
set to power = power_dbm + power_range_db + 3. To configure a 4 dB power range across all spans
in 0.5 dB steps: [-2, 2, 0.5]. A 17 dB span is set to power = power_dbm + power_range_db - 1, a
20 dB span to power = power_dbm + power_range_db and a 23 dB span to power = power_dbm +
power_range_db + 1

max_fiber_lineic_loss_for_raman(num-
ber)

Maximum linear fiber loss for Raman amplification use.

max_length(num-
ber)

Split fiber lengths > max_length. Interest to support high level topologies that do not specify in
line amplification sites. For example the CORONET_Global_Topology.xlsx defines links > 1000km
between 2 sites: it couldn’t be simulated if these links were not split in shorter span lengths.

length_unit“m”/”km”Unit for max_length.
max_loss(num-

ber)
Not used in the current code implementation.

padding(num-
ber)

In dB. Min span loss before putting an attenuator before fiber. Attenuator value Fiber.att_in = max(0,
padding - span_loss). Padding can be set manually to reach a higher padding value for a given fiber
by filling in the Fiber/params/att_in field in the topology json input [1] but if span_loss = length *
loss_coef + att_in + con_in + con_out < padding, the specified att_in value will be completed to have
span_loss = padding. Therefore it is not possible to set span_loss < padding.

EOL (num-
ber)

All fiber span loss ageing. The value is added to the con_out (fiber output connector). So the design
and the path feasibility are performed with span_loss + EOL. EOL cannot be set manually for a given
fiber span (workaround is to specify higher con_out loss for this fiber).

con_in,
con_out

(num-
ber)

Default values if Fiber/params/con_in/out is None in the topology input description. This default
value is ignored if a Fiber/params/con_in/out value is input in the topology for a given Fiber.

{
"uid": "fiber (A1->A2)",
"type": "Fiber",
"type_variety": "SSMF",
"params":
{

"length": 120.0,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0,
"con_out": 0

}
}

4.2. Global parameters 17

gnpy Documentation

4.2.2 SpectralInformation

The user can only modify the value of existing parameters. It defines a spectrum of N identical carriers. While the
code libraries allow for different carriers and power levels, the current user parametrization only allows one carrier
type and one power/channel definition.

field type description
f_min,
f_max

(num-
ber)

In Hz. Define spectrum boundaries. Note that due to backward compatibility, the first channel
central frequency is placed at 𝑓𝑚𝑖𝑛 + 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 and the last one at 𝑓𝑚𝑎𝑥.

baud_rate(num-
ber)

In Hz. Simulated baud rate.

spacing(num-
ber)

In Hz. Carrier spacing.

roll_off(num-
ber)

Pure number between 0 and 1. TX signal roll-off shape. Used by Raman-aware simulation code.

tx_osnr(num-
ber)

In dB. OSNR out from transponder.

power_dbm(num-
ber)

Reference channel power. In gain mode (see spans/power_mode = false), all gain set-
tings are offset w/r/t this reference power. In power mode, it is the reference power for
Spans/delta_power_range_db. For example, if delta_power_range_db = [0,0,0], the same
power=power_dbm is launched in every spans. The network design is performed with the
power_dbm value: even if a power sweep is defined (see after) the design is not repeated.

power_range_db(num-
ber)

Power sweep excursion around power_dbm. It is not the min and max channel power values! The
reference power becomes: power_range_db + power_dbm.

sys_margins(num-
ber)

In dB. Added margin on min required transceiver OSNR.

18 Chapter 4. JSON Input Files

CHAPTER

FIVE

EXCEL (XLS, XLSX) INPUT FILES

gnpy-transmission-example gives the possibility to use an excel input file instead of a json file. The program
then will generate the corresponding json file for you.

The file named ‘meshTopologyExampleV2.xls’ is an example.

In order to work the excel file MUST contain at least 2 sheets:

• Nodes

• Links

(In progress) The File MAY contain an additional sheet:

• Eqt

• Service

5.1 Nodes sheet

Nodes sheet contains nine columns. Each line represents a ‘node’ (ROADM site or an in line amplifier site ILA or a
Fused):

City (Mandatory) ; State ; Country ; Region ; Latitude ; Longitude ; Type

• City is used for the name of a node of the graph. It accepts letters, numbers,underscore,dash, blank. . . (not
exhaustive). The user may want to avoid commas for future CSV exports.

City name MUST be unique

• Type is not mandatory.

– If not filled, it will be interpreted as an ‘ILA’ site if node degree is 2 and as a ROADM otherwise.

– If filled, it can take “ROADM”, “FUSED” or “ILA” values. If another string is used, it will be considered
as not filled. FUSED means that ingress and egress spans will be fused together.

• State, Country, Region are not mandatory. “Region” is a holdover from the CORONET topology reference file
CORONET_Global_Topology.xlsx. CORONET separates its network into geographical regions (Europe, Asia,
Continental US.) This information is not used by gnpy.

• Longitude, Latitude are not mandatory. If filled they should contain numbers.

• Booster_restriction and Preamp_restriction are not mandatory. If used, they must contain one or several
amplifier type_variety names separated by ‘ | ‘. This information is used to restrict types of amplifiers used in
a ROADM node during autodesign. If a ROADM booster or preamp is already specified in the Eqpt sheet , the
field is ignored. The field is also ignored if the node is not a ROADM node.

19

gnpy/example-data/CORONET_Global_Topology.xlsx

gnpy Documentation

There MUST NOT be empty line(s) between two nodes lines

5.2 Links sheet

Links sheet must contain sixteen columns:

<-- east cable from a to z
→˓ --> <-- west from z to -->
NodeA ; NodeZ ; Distance km ; Fiber type ; Lineic att ; Con_in ; Con_out ; PMD ;
→˓Cable Id ; Distance km ; Fiber type ; Lineic att ; Con_in ; Con_out ; PMD ; Cable Id

Links sheets MUST contain all links between nodes defined in Nodes sheet. Each line represents a ‘bidir link’ between
two nodes. The two directions are represented on a single line with “east cable from a to z” fields and “west from z to
a” fields. Values for ‘a to z’ may be different from values from ‘z to a’. Since both direction of a bidir ‘a-z’ link are
described on the same line (east and west), ‘z to a’ direction MUST NOT be repeated in a different line. If repeated, it
will generate another parrallel bidir link between the same end nodes.

Parameters for “east cable from a to z” and “west from z to a” are detailed in 2x7 columns. If not filled, “west from z
to a” is copied from “east cable from a to z”.

For example, a line filled with:

node6 ; node3 ; 80 ; SSMF ; 0.2 ; 0.5 ; 0.5 ; 0.1 ; cableB ; ; ; 0.21 ; 0.2 ; ; ;

will generate a unidir fiber span from node6 to node3 with:

[node6 node3 80 SSMF 0.2 0.5 0.5 0.1 cableB]

and a fiber span from node3 to node6:

[node6 node3 80 SSMF 0.21 0.2 0.5 0.1 cableB] attributes.

• NodeA and NodeZ are Mandatory. They are the two endpoints of the link. They MUST contain a node name
from the City names listed in Nodes sheet.

• Distance km is not mandatory. It is the link length.

– If filled it MUST contain numbers. If empty it is replaced by a default “80” km value.

– If value is below 150 km, it is considered as a single (bidirectional) fiber span.

– If value is over 150 km the gnpy-transmission-example` program will automatically suppose that inter-
mediate span description are required and will generate fiber spans elements with “_1”,”_2”, . . . trailing
strings which are not visible in the json output. The reason for the splitting is that current edfa usually do
not support large span loss. The current assumption is that links larger than 150km will require intermedi-
ate amplification. This value will be revisited when Raman amplification is added”

• Fiber type is not mandatory.

If filled it must contain types listed in eqpt_config.json in “Fiber” list “type_variety”. If not filled it takes
“SSMF” as default value.

• Lineic att is not mandatory.

It is the lineic attenuation expressed in dB/km. If filled it must contain positive numbers. If not filled it takes
“0.2” dB/km value

• Con_in, Con_out are not mandatory.

20 Chapter 5. Excel (XLS, XLSX) input files

gnpy/example-data/eqpt_config.json

gnpy Documentation

They are the connector loss in dB at ingress and egress of the fiber spans. If filled they must contain positive
numbers. If not filled they take “0.5” dB default value.

• PMD is not mandatory and and is not used yet.

It is the PMD value of the link in ps. If filled they must contain positive numbers. If not filled, it takes “0.1” ps
value.

• Cable Id is not mandatory. If filled they must contain strings with the same constraint as “City” names. Its value
is used to differenate links having the same end points. In this case different Id should be used. Cable Ids are
not meant to be unique in general.

(in progress)

5.3 Eqpt sheet

The equipment sheet (named “Eqpt”) is optional. If provided, it specifies types of boosters and preamplifiers for all
ROADM degrees of all ROADM nodes, and for all ILA nodes.

This sheet contains twelve columns:

<-- east cable from a to z --> <--
→˓west from z to a -->
Node A ; Node Z ; amp type ; att_in ; amp gain ; tilt ; att_out ; delta_p ; amp type ;
→˓ att_in ; amp gain ; tilt ; att_out ; delta_p

If the sheet is present, it MUST have as many lines as there are egress directions of ROADMs defined in Links Sheet,
and all ILAs.

For example, consider the following list of links (A, B and C being a ROADM and amp# ILAs):

A - amp1
amp1 - amp2
Amp2 - B
A - amp3
amp3 - C

then Eqpt sheet should contain:

• one line for each ILAs: amp1, amp2, amp3

• one line for each one-degree ROADM (B and C in this example)

• two lines for each two-degree ROADM (just the ROADM A)

A - amp1
amp1 - amp2
Amp2 - B
A - amp3
amp3 - C
B - amp2
C - amp3

In case you already have filled Nodes and Links sheets create_eqpt_sheet.py can be used to automatically create a
template for the mandatory entries of the list.

$ cd $(gnpy-example-data)
$ python create_eqpt_sheet.py meshTopologyExampleV2.xls

5.3. Eqpt sheet 21

gnpy/example-data/create_eqpt_sheet.py

gnpy Documentation

This generates a text file meshTopologyExampleV2_eqt_sheet.txt whose content can be directly copied into the Eqt
sheet of the excel file. The user then can fill the values in the rest of the columns.

• Node A is mandatory. It is the name of the node (as listed in Nodes sheet). If Node A is a ‘ROADM’ (Type
attribute in sheet Node), its number of occurence must be equal to its degree. If Node A is an ‘ILA’ it should
appear only once.

• Node Z is mandatory. It is the egress direction from the Node A site. Multiple Links between the same Node A
and NodeZ is not supported.

• amp type is not mandatory. If filled it must contain types listed in eqpt_config.json in “Edfa” list “type_variety”.
If not filled it takes “std_medium_gain” as default value. If filled with fused, a fused element with 0.0 dB loss
will be placed instead of an amplifier. This might be used to avoid booster amplifier on a ROADM direction.

• amp_gain is not mandatory. It is the value to be set on the amplifier (in dB). If not filled, it will be determined
with design rules in the convert.py file. If filled, it must contain positive numbers.

• att_in and att_out are not mandatory and are not used yet. They are the value of the attenuator at input and
output of amplifier (in dB). If filled they must contain positive numbers.

• tilt, in dB, is not mandatory. It is the target gain tilt over the full amplfifier bandwidth and is defined with regard
to wavelength, i.e. negative tilt means lower gain for higher wavelengths (lower frequencies). If not filled, the
default value is 0.

• delta_p, in dBm, is not mandatory. If filled it is used to set the output target power per channel at the output of
the amplifier, if power_mode is True. The output power is then set to power_dbm + delta_power.

to be completed

(in progress)

5.4 Service sheet

Service sheet is optional. It lists the services for which path and feasibility must be computed with
gnpy-path-request.

Service sheet must contain 11 columns:

route id ; Source ; Destination ; TRX type ; Mode ; System: spacing ; System: input
→˓power (dBm) ; System: nb of channels ; routing: disjoint from ; routing: path ;
→˓routing: is loose?

• route id is mandatory. It must be unique. It is the identifier of the request. It can be an integer or a string (do
not use blank or dash or coma)

• Source is mandatory. It is the name of the source node (as listed in Nodes sheet). Source MUST be a ROADM
node. (TODO: relax this and accept trx entries)

• Destination is mandatory. It is the name of the destination node (as listed in Nodes sheet). Source MUST be a
ROADM node. (TODO: relax this and accept trx entries)

• TRX type is mandatory. They are the variety type and selected mode of the transceiver to be used for the
propagation simulation. These modes MUST be defined in the equipment library. The format of the mode is
used as the name of the mode. (TODO: maybe add another mode id on Transceiver library ?). In particular the
mode selection defines the channel baudrate to be used for the propagation simulation.

• mode is optional. If not specified, the program will search for the mode of the defined transponder with the
highest baudrate fitting within the spacing value.

22 Chapter 5. Excel (XLS, XLSX) input files

gnpy/example-data/eqpt_config.json

gnpy Documentation

• System: spacing is mandatory. Spacing is the channel spacing defined in GHz difined for the feasibility propa-
gation simulation, assuming system full load.

• System: input power (dBm) ; System: nb of channels are optional input defining the system parameters for
the propagation simulation.

– input power is the channel optical input power in dBm

– nb of channels is the number of channels to be used for the simulation.

• routing: disjoint from ; routing: path ; routing: is loose? are optional.

– disjoint from: identifies the requests from which this request must be disjoint. If filled it must contain
request ids separated by ‘ | ‘

– path: is the set of ROADM nodes that must be used by the path. It must contain the list of ROADM names
that the path must cross. TODO : only ROADM nodes are accepted in this release. Relax this with any
type of nodes. If filled it must contain ROADM ids separated by ‘ | ‘. Exact names are required.

– is loose? ‘no’ value means that the list of nodes should be strictly followed, while any other value means
that the constraint may be relaxed if the node is not reachable.

• path bandwidth is mandatory. It is the amount of capacity required between source and destination in Gbit/s.
Value should be positive (non zero). It is used to compute the amount of required spectrum for the service.

5.4. Service sheet 23

gnpy Documentation

24 Chapter 5. Excel (XLS, XLSX) input files

CHAPTER

SIX

EXTENDING GNPY WITH VENDOR-SPECIFIC DATA

GNPy ships with an equipment library containing machine-readable datasheets of networking equipment. Vendors
who are willing to contribute descriptions of their supported products are encouraged to submit a patch.

This chapter discusses option for modeling performance of EDFA amplifiers, Raman amplifiers, transponders and
ROADMs.

6.1 EDFAs

An accurate description of the EDFA and especially its noise characteristics is required. GNPy describes this property
in terms of the Noise Figure (NF) of an amplifier model as a function of its operating point. GNPy supports several
different noise models, and vendors are encouraged to pick one which describes performance of their equipment most
accurately.

6.1.1 Polynomial NF

This model computes the NF as a function of the difference between the optimal gain and the current gain. The NF is
expressed as a third-degree polynomial:

𝑓(𝑥) = a𝑥3 + b𝑥2 + c𝑥+ d
NF = 𝑓(𝐺max −𝐺)

This model can be also used for fixed-gain fixed-NF amplifiers. In that case, use:

𝑎 = 𝑏 = 𝑐 = 0

𝑑 = NF

6.1.2 Polynomial OSNR (OpenROADM-style for inline amplifier)

This model is useful for amplifiers compliant to the OpenROADM specification for ILA (an in-line amplifier). The
amplifier performance is evaluated via its incremental OSNR, which is a function of the input power.

OSNRinc(𝑃in) = a𝑃 3
in + b𝑃 2

in + c𝑃in + d

25

https://review.gerrithub.io/Documentation/intro-gerrit-walkthrough-github.html

gnpy Documentation

6.1.3 Noise mask (OpenROADM-style for combined preamp and booster)

Unlike GNPy which simluates the preamplifier and the booster separately as two amplifiers for best accuracy, the
OpenROADM specification mandates a certain performance level for a combination of these two amplifiers. For the
express path, the effective noise mask comprises the preamplifier and the booster. When terminating a channel, the
same effective noise mask is mandated for a combination of the preamplifier and the drop stage.

GNPy emulates this specification via two special NF models:

• The openroadm_preamp NF model for preamplifiers. This NF model provides all of the linear impairments
to the signal, including those which are incured by the booster in a real network.

• The openroadm_booster NF model is a special “zero noise” faux amplifier in place of the booster.

6.1.4 Min-max NF

When the vendor prefers not to share the amplifier description in full detail, GNPy also supports describing the NF
characteristics via the minimal and maximal NF. This approximates a more accurate polynomial description reasonably
well for some models of a dual-coil EDFA with a VOA in between. In these amplifiers, the minimal NF is achieved
when the EDFA operates at its maximal (and usually optimal, in terms of flatness) gain. The worst (maximal) NF
applies when the EDFA operates at the minimal gain.

6.1.5 Dual-stage

Dual-stage amplifier combines two distinct amplifiers. Vendors which provide an accurate description of their preamp
and booster stages separately can use the dual-stage model for an aggregate description of the whole amplifier.

6.1.6 Advanced Specification

The amplifier performance can be further described in terms of gain ripple, NF ripple, and the dynamic gain tilt. When
provided, the amplifier characteristic is fine-tuned as a function of carrier frequency.

6.2 Raman Amplifiers

An accurate simulation of Raman amplification requires knowledge of:

• the power and wavelength of all Raman pumping lasers,

• the direction, whether it is co-propagating or counter-propagating,

• the Raman efficiency of the fiber,

• the fiber temperature.

Under certain scenarios it is useful to be able to run a simulation without an accurate Raman description. For these
purposes, it is possible to approximate a Raman amplifier via a fixed-gain EDFA with the polynomial NF model using
a = b = c = 0, and a desired effective d = 𝑁𝐹 . This is also useful to quickly approximate a hybrid EDFA+Raman
amplifier.

26 Chapter 6. Extending GNPy with vendor-specific data

gnpy Documentation

6.3 Transponders

Since transponders are usually capable of operating in a variety of modes, these are described separately. A mode
usually refers to a particular performance point that is defined by a combination of the symbol rate, modulation
format, and FEC (Forward Error Correction).

The following data are required for each mode:

bit-rate Data bit rate, in Gbits × 𝑠−1.

baud-rate Symbol modulation rate, in Gbaud.

required-osnr Minimal allowed OSNR for the receiver.

tx-osnr Initial OSNR at the transmitter’s output.

grid-spacing Minimal grid spacing, i.e., an effective channel spectral bandwidth. In Hz.

tx-roll-off Roll-off parameter (𝛽) of the TX pulse shaping filter. This assumes a raised-cosine filter.

rx-power-min and rx-power-max The allowed range of power at the receiver. In dBm.

cd-max Maximal allowed Chromatic Dispersion (CD). In ps/nm.

pmd-max Maximal allowed Polarization Mode Dispersion (PMD). In ps.

cd-penalty Work-in-progress. Describes the increase of the requires GSNR as the CD (Chromatic Dispersion)
deteriorates.

dgd-penalty Work-in-progress. Describes the increase of the requires GSNR as the DGD (Differential Group
Delay) deteriorates.

pmd-penalty Work-in-progress. Describes the increase of the requires GSNR as the PMD (Polarization Mode
Dispersion) deteriorates.

GNPy does not directly track the FEC performance, so the type of chosen FEC is likely indicated in the name of the
selected transponder mode alone.

6.4 ROADMs

In a ROADM (Reconfigurable Add/Drop Multiplexer), GNPy simulates the impairments of the preamplifiers and
boosters of line degrees separately. The set of parameters for each ROADM model therefore includes:

add-drop-osnr OSNR penalty introduced by the Add and Drop stages of this ROADM type.

target-channel-out-power Per-channel target TX power towards the egress amplifier. Within GNPy, a
ROADM is expected to attenuate any signal that enters the ROADM node to this level. This can be overridden
on a per-link in the network topology.

pmd Polarization mode dispersion (PMD) penalty of the express path. In ps.

Provisions are in place to define the list of all allowed booster and preamplifier types. This is useful for specifying con-
straints on what amplifier modules fit into ROADM chassis, and when using fully disaggregated ROADM topologies
as well.

6.3. Transponders 27

gnpy Documentation

28 Chapter 6. Extending GNPy with vendor-specific data

CHAPTER

SEVEN

ABOUT THE PROJECT

GNPy is a sponsored project of the OOPT/PSE working group of the Telecom Infra Project.

There are weekly calls about our progress. Newcomers, users and telecom operators are especially welcome there. We
encourage all interested people outside the TIP to join the project and especially to get in touch with us.

7.1 Contributing

gnpy is looking for additional contributors, especially those with experience planning and maintaining large-scale,
real-world mesh optical networks.

To get involved, please contact Jan Kundrát or Gert Grammel.

gnpy contributions are currently limited to members of TIP. Membership is free and open to all.

See the Onboarding Guide for specific details on code contributions, or just upload patches to our Gerrit. Here is what
we are currently working on.

7.2 Project Background

Data Centers are built upon interchangeable, highly standardized node and network architectures rather than a sum
of isolated solutions. This also translates to optical networking. It leads to a push in enabling multi-vendor optical
network by disaggregating HW and SW functions and focusing on interoperability. In this paradigm, the burden
of responsibility for ensuring the performance of such disaggregated open optical systems falls on the operators.
Consequently, operators and vendors are collaborating in defining control models that can be readily used by off-
the-shelf controllers. However, node and network models are only part of the answer. To take reasonable decisions,
controllers need to incorporate logic to simulate and assess optical performance. Hence, a vendor-independent optical
quality estimator is required. Given its vendor-agnostic nature, such an estimator needs to be driven by a consortium
of operators, system and component suppliers.

Founded in February 2016, the Telecom Infra Project (TIP) is an engineering-focused initiative which is operator
driven, but features collaboration across operators, suppliers, developers, integrators, and startups with the goal of
disaggregating the traditional network deployment approach. The group’s ultimate goal is to help provide better
connectivity for communities all over the world as more people come on-line and demand more bandwidth-intensive
experiences like video, virtual reality and augmented reality.

Within TIP, the Open Optical Packet Transport (OOPT) project group is chartered with unbundling monolithic packet-
optical network technologies in order to unlock innovation and support new, more flexible connectivity paradigms.

The key to unbundling is the ability to accurately plan and predict the performance of optical line systems based on
an accurate simulation of optical parameters. Under that OOPT umbrella, the Physical Simulation Environment (PSE)

29

https://telecominfraproject.com/open-optical-packet-transport/
http://telecominfraproject.com
https://telecominfraproject.com/apply-for-membership/
https://github.com/Telecominfraproject/oopt-gnpy/discussions
mailto:jan.kundrat@telecominfraproject.com
mailto:ggrammel@juniper.net
http://telecominfraproject.com
https://github.com/Telecominfraproject/gnpy/wiki/Onboarding-Guide
https://review.gerrithub.io/Documentation/intro-gerrit-walkthrough-github.html
https://review.gerrithub.io/q/project:Telecominfraproject/oopt-gnpy+status:open
https://review.gerrithub.io/q/project:Telecominfraproject/oopt-gnpy+status:open

gnpy Documentation

working group set out to disrupt the planning landscape by providing an open source simulation model which can be
used freely across multiple vendor implementations.

7.3 TIP OOPT/PSE & PSE WG Charter

We believe that openly sharing ideas, specifications, and other intellectual property is the key to maximizing innovation
and reducing complexity

TIP OOPT/PSE’s goal is to build an end-to-end simulation environment which defines the network models of the opti-
cal device transfer functions and their parameters. This environment will provide validation of the optical performance
requirements for the TIP OLS building blocks.

• The model may be approximate or complete depending on the network complexity. Each model shall be vali-
dated against the proposed network scenario.

• The environment must be able to process network models from multiple vendors, and also allow users to pick
any implementation in an open source framework.

• The PSE will influence and benefit from the innovation of the DTC, API, and OLS working groups.

• The PSE represents a step along the journey towards multi-layer optimization.

7.4 License

GNPy is distributed under a standard BSD 3-Clause License.

30 Chapter 7. About the project

CHAPTER

EIGHT

PHYSICAL MODEL USED IN GNPY

8.1 QoT-E including ASE noise and NLI accumulation

The operations of PSE simulative framework are based on the capability to estimate the QoT of one or
more channels operating lightpaths over a given network route. For backbone transport networks, we
can suppose that transceivers are operating polarization-division-multiplexed multilevel modulation formats
with DSP-based coherent receivers, including equalization. For the optical links, we focus on state-of-
the-art amplified and uncompensated fiber links, connecting network nodes including ROADMs, where
add and drop operations on data traffic are performed. In such a transmission scenario, it is well accepted
[VRS+16][BSR+12][CCB+05][ME06][SF11][JK04][DFMS04][SB11][SFP12][PBC+02][DFMS16][PCC+06][Sav05][BBS13][JA01]
to assume that transmission performances are limited by the amplified spontaneous emission (ASE) noise generated
by optical amplifiers and and by nonlinear propagation effects: accumulation of a Gaussian disturbance defined
as nonlinear interference (NLI) and generation of phase noise. State-of-the-art DSP in commercial transceivers
are typically able to compensate for most of the phase noise through carrier-phase estimator (CPE) algorithms,
for modulation formats with cardinality up to 16, per polarization state [PJ01][SLEF+15][FME+16]. So, for
backbone networks covering medium-to-wide geographical areas, we can suppose that propagation is limited by the
accumulation of two Gaussian disturbances: the ASE noise and the NLI. Additional impairments such as filtering
effects introduced by ROADMs can be considered as additional equivalent power penalties depending on the ratio
between the channel bandwidth and the ROADMs filters and the number of traversed ROADMs (hops) of the route
under analysis. Modeling the two major sources of impairments as Gaussian disturbances, and being the receivers
coherent, the unique QoT parameter determining the bit error rate (BER) for the considered transmission scenario is
the generalized signal-to-noise ratio (SNR) defined as

SNR = 𝐿𝐹
𝑃ch

𝑃ASE + 𝑃NLI
= 𝐿𝐹

(︂
1

SNRLIN
+

1

SNRNL

)︂−1

where 𝑃ch is the channel power, 𝑃ASE and 𝑃NLI are the power levels of the disturbances in the channel bandwidth for
ASE noise and NLI, respectively. 𝐿𝐹 is a parameter assuming values smaller or equal than one that summarizes the
equivalent power penalty loss such as filtering effects. Note that for state-of-the art equipment, filtering effects can be
typically neglected over routes with few hops [RNR+01][FCBS06].

To properly estimate 𝑃ch and 𝑃ASE the transmitted power at the beginning of the considered route
must be known, and losses and amplifiers gain and noise figure, including their variation with fre-
quency, must be characterized. So, the evaluation of SNRLIN just requires an accurate knowledge
of equipment, which is not a trivial aspect, but it is not related to physical-model issues. For the
evaluation of the NLI, several models have been proposed and validated in the technical literature
[VRS+16][BSR+12][CCB+05][ME06][SF11][JK04][DFMS04][SB11][SFP12][PBC+02][DFMS16][PCC+06][Sav05][BBS13][JA01].
The decision about which model to test within the PSE activities was driven by requirements of the entire PSE
framework:

i. the model must be local, i.e., related individually to each network element (i.e. fiber span) generating NLI, in-
dependently of preceding and subsequent elements; and ii. the related computational time must be compatible with
interactive operations.

31

gnpy Documentation

So, the choice fell on the Gaussian Noise (GN) model with incoherent accumulation of NLI over fiber spans [PBC+02].
We implemented both the exact GN-model evaluation of NLI based on a double integral (Eq. (11) of [PBC+02]) and its
analytical approximation (Eq. (120-121) of [PCC+06]). We performed several validation analyses comparing results
of the two implementations with split-step simulations over wide bandwidths [PCCC07], and results clearly showed
that for fiber types with chromatic dispersion roughly larger than 4 ps/nm/km, the analytical approximation ensures an
excellent accuracy with a computational time compatible with real-time operations.

8.2 The Gaussian Noise Model to evaluate the NLI

As previously stated, fiber propagation of multilevel modulation formats relying on the polarization-division-
multiplexing generates impairments that can be summarized as a disturbance called nonlinear interference (NLI),
when exploiting a DSP-based coherent receiver, as in all state-of-the-art equipment. From a practical point of view,
the NLI can be modeled as an additive Gaussian random process added by each fiber span, and whose strength depends
on the cube of the input power spectral density and on the fiber-span parameters.

Since the introduction in the market in 2007 of the first transponder based on such a transmission technique, the
scientific community has intensively worked to define the propagation behavior of such a trasnmission technique.
First, the role of in-line chromatic dispersion compensation has been investigated, deducing that besides being not
essential, it is indeed detrimental for performances [CPCF09]. Then, it has been observed that the fiber propagation
impairments are practically summarized by the sole NLI, being all the other phenomena compensated for by the blind
equalizer implemented in the receiver DSP [CBC+09]. Once these assessments have been accepted by the community,
several prestigious research groups have started to work on deriving analytical models able to estimating the NLI
accumulation, and consequentially the generalized SNR that sets the BER, according to the transponder BER vs. SNR
performance. Many models delivering different levels of accuracy have been developed and validated. As previously
clarified, for the purposes of the PSE framework, the GN-model with incoherent accumulation of NLI over fiber spans
has been selected as adequate. The reason for such a choice is first such a model being a “local” model, so related
to each fiber spans, independently of the preceding and succeeding network elements. The other model characteristic
driving the choice is the availability of a closed form for the model, so permitting a real-time evaluation, as required by
the PSE framework. For a detailed derivation of the model, please refer to [PCC+06], while a qualitative description
can be summarized as in the following. The GN-model assumes that the channel comb propagating in the fiber is
well approximated by unpolarized spectrally shaped Gaussian noise. In such a scenario, supposing to rely - as in
state-of-the-art equipment - on a receiver entirely compensating for linear propagation effects, propagation in the fiber
only excites the four-wave mixing (FWM) process among the continuity of the tones occupying the bandwidth. Such
a FWM generates an unpolarized complex Gaussian disturbance in each spectral slot that can be easily evaluated
extending the FWM theory from a set of discrete tones - the standard FWM theory introduced back in the 90s by
Inoue [Ino92]- to a continuity of tones, possibly spectrally shaped. Signals propagating in the fiber are not equivalent
to Gaussian noise, but thanks to the absence of in-line compensation for choromatic dispersion, the become so, over
short distances. So, the Gaussian noise model with incoherent accumulation of NLI has estensively proved to be a
quick yet accurate and conservative tool to estimate propagation impairments of fiber propagation. Note that the GN-
model has not been derived with the aim of an exact performance estimation, but to pursue a conservative performance
prediction. So, considering these characteristics, and the fact that the NLI is always a secondary effect with respect
to the ASE noise accumulation, and - most importantly - that typically linear propagation parameters (losses, gains
and noise figures) are known within a variation range, a QoT estimator based on the GN model is adequate to deliver
performance predictions in terms of a reasonable SNR range, rather than an exact value. As final remark, it must be
clarified that the GN-model is adequate to be used when relying on a relatively narrow bandwidth up to few THz.
When exceeding such a bandwidth occupation, the GN-model must be generalized introducing the interaction with
the Stimulated Raman Scattering in order to give a proper estimation for all channels [CAC18]. This will be the main
upgrade required within the PSE framework.

32 Chapter 8. Physical Model used in GNPy

CHAPTER

NINE

API REFERENCE DOCUMENTATION

9.1 gnpy package

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-
world mesh optical networks. It is based on the Gaussian Noise Model.

Signal propagation is implemented in core. Path finding and spectrum assignment is in topology . Various tools
and auxiliary code, including the JSON I/O handling, is in tools.

9.1.1 gnpy.core

Simulation of signal propagation in the DWDM network

Optical signals, as defined via info.SpectralInformation, enter elements which compute how these sig-
nals are affected as they travel through the network. The simulation is controlled via parameters and imple-
mented mainly via science_utils.

9.1.1.1 gnpy.core.ansi_escapes

A random subset of ANSI terminal escape codes for colored messages

9.1.1.2 gnpy.core.exceptions

Exceptions thrown by other gnpy modules

exception gnpy.core.exceptions.ConfigurationError
Bases: Exception

User-provided configuration contains an error

exception gnpy.core.exceptions.DisjunctionError
Bases: gnpy.core.exceptions.ServiceError

Disjunction of user-provided request can not be satisfied

exception gnpy.core.exceptions.EquipmentConfigError
Bases: gnpy.core.exceptions.ConfigurationError

Incomplete or wrong configuration within the equipment library

exception gnpy.core.exceptions.NetworkTopologyError
Bases: gnpy.core.exceptions.ConfigurationError

Topology of user-provided network is wrong

33

gnpy Documentation

exception gnpy.core.exceptions.ParametersError
Bases: gnpy.core.exceptions.ConfigurationError

Incomplete or wrong configurations within parameters json

exception gnpy.core.exceptions.ServiceError
Bases: Exception

Service of user-provided request is wrong

exception gnpy.core.exceptions.SpectrumError
Bases: Exception

Spectrum errors of the program

9.1.2 gnpy.topology

Tracking request for spectrum and their spectrum_assignment.

9.1.3 gnpy.tools

Processing of data via json_io. Utilities for Excel conversion in convert and service_sheet. Example code
in cli_examples and plots.

34 Chapter 9. API Reference Documentation

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

35

gnpy Documentation

36 Chapter 10. Indices and tables

BIBLIOGRAPHY

[BSR+12] A. Bononi, P. Serena, N. Rossi, E. Grellier, and F. Vacondio. Modeling nonlinearity in coherent trans-
missions with dominant intrachannel-four-wave-mixing. Optics Express, 20(7):7777, 2012. URL: https:
//www.osapublishing.org/oe/abstract.cfm?uri=oe-20-7-7777, doi:10.1364/OE.20.007777.

[BBS13] Alberto Bononi, Ottmar Beucher, and Paolo Serena. Single- and cross-channel nonlinear interference in
the Gaussian Noise model with rectangular spectra. Optics Express, 21(26):32254, 2013. URL: https:
//www.osapublishing.org/oe/abstract.cfm?uri=oe-21-26-32254, doi:10.1364/OE.21.032254.

[CAC18] Mattia Cantono, Jean Luc Auge, and Vittorio Curri. Modelling the impact of SRS on NLI genera-
tion in commercial equipment: an experimental investigation. In Optical Fiber Communication Con-
ference/National Fiber Optic Engineers Conference 2018. 2018. doi:10.1364/OFC.2018.M1D.2.

[CBC+09] A. Carena, G. Bosco, V. Curri, P. Poggiolini, M. Tapia Taiba, and F. Forghieri. Statistical characterization
of PM-QPSK signals after propagation in uncompensated fiber links. In European Conference on Op-
tical Communications, 2010, 1–3. IEEE, 2010-09. URL: http://ieeexplore.ieee.org/document/5621509/,
doi:10.1109/ECOC.2010.5621509.

[CCB+05] A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri. Modeling of the Impact of Nonlin-
ear Propagation Effects in Uncompensated Optical Coherent Transmission Links. Journal of Light-
wave Technology, 30(10):1524–1539, 2012-05. URL: http://ieeexplore.ieee.org/document/6158564/,
doi:10.1109/JLT.2012.2189198.

[CPCF09] V. Curri, P. Poggiolini, A. Carena, and F. Forghieri. Dispersion Compensation and Mitiga-
tion of Nonlinear Effects in 111-Gb/s WDM Coherent PM-QPSK Systems. IEEE Photonics
Technology Letters, 20(17):1473–1475, 2008-09. URL: http://ieeexplore.ieee.org/document/4589011/,
doi:10.1109/LPT.2008.927906.

[DFMS04] Ronen Dar, Meir Feder, Antonio Mecozzi, and Mark Shtaif. Properties of nonlinear noise in long,
dispersion-uncompensated fiber links. Optics Express, 21(22):25685, 2013-11-04. URL: https://www.
osapublishing.org/oe/abstract.cfm?uri=oe-21-22-25685, doi:10.1364/OE.21.025685.

[DFMS16] Ronen Dar, Meir Feder, Antonio Mecozzi, and Mark Shtaif. Accumulation of nonlinear interference noise
in fiber-optic systems. Optics Express, 22(12):14199, 2014-06-16. URL: https://www.osapublishing.org/
oe/abstract.cfm?uri=oe-22-12-14199, doi:10.1364/OE.22.014199.

[FME+16] T. Fehenberger, M. Mazur, T. A. Eriksson, M. Karlsson, and N. Hanik. Experimental analysis of correla-
tions in the nonlinear phase noise in optical fiber systems. In ECOC 2016; 42nd European Conference on
Optical Communication, volume, 1–3. Sept 2016. doi:.

[FCBS06] Tommaso Foggi, Giulio Colavolpe, Alberto Bononi, and Paolo Serena. Overcoming filtering penalties in
flexi-grid long-haul optical systems. In International Conference on Communications, 5168–5173. IEEE,
2015-06. URL: http://ieeexplore.ieee.org/document/7249144/, doi:10.1109/ICC.2015.7249144.

[Ino92] K. Inoue. Four-wave mixing in an optical fiber in the zero-dispersion wavelength region. Journal of Light-
wave Technology, 10(11):1553–1561, Nov 1992. doi:10.1109/50.184893.

37

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-7-7777
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-7-7777
https://doi.org/10.1364/OE.20.007777
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-26-32254
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-26-32254
https://doi.org/10.1364/OE.21.032254
https://doi.org/10.1364/OFC.2018.M1D.2
http://ieeexplore.ieee.org/document/5621509/
https://doi.org/10.1109/ECOC.2010.5621509
http://ieeexplore.ieee.org/document/6158564/
https://doi.org/10.1109/JLT.2012.2189198
http://ieeexplore.ieee.org/document/4589011/
https://doi.org/10.1109/LPT.2008.927906
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-22-25685
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-22-25685
https://doi.org/10.1364/OE.21.025685
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-12-14199
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-12-14199
https://doi.org/10.1364/OE.22.014199
https://doi.org/
http://ieeexplore.ieee.org/document/7249144/
https://doi.org/10.1109/ICC.2015.7249144
https://doi.org/10.1109/50.184893

gnpy Documentation

[JA01] Pontus Johannisson and Erik Agrell. Modeling of Nonlinear Signal Distortion in Fiber-Optic Net-
works. Journal of Lightwave Technology, 32(23):4544–4552, 2014-12-01. URL: http://ieeexplore.ieee.
org/document/6915838/, doi:10.1109/JLT.2014.2361357.

[JK04] Pontus Johannisson and Magnus Karlsson. Perturbation Analysis of Nonlinear Propagation in a Strongly
Dispersive Optical Communication System. Journal of Lightwave Technology, 31(8):1273–1282, 2013-
04. URL: http://ieeexplore.ieee.org/document/6459512/, doi:10.1109/JLT.2013.2246543.

[ME06] Antonio Mecozzi and René-Jean Essiambre. Nonlinear Shannon Limit in Pseudolinear Coherent Sys-
tems. Journal of Lightwave Technology, 30(12):2011–2024, 2012-06. URL: http://ieeexplore.ieee.org/
document/6175093/, doi:10.1109/JLT.2012.2190582.

[PCCC07] Dario Pilori, Mattia Cantono, Andrea Carena, and Vittorio Curri. FFSS: The fast fiber simulator soft-
ware. In International Conference on Transparent Optical Networks, 1–4. IEEE, 2017-07. URL: http:
//ieeexplore.ieee.org/document/8025002/, doi:10.1109/ICTON.2017.8025002.

[PCC+06] P Poggiolini, A Carena, V Curri, G Bosco, and F Forghieri. Analytical Modeling of Nonlinear Propagation
in Uncompensated Optical Transmission Links. IEEE Photonics Technology Letters, 23(11):742–744,
2011-06. URL: http://ieeexplore.ieee.org/document/5735190/, doi:10.1109/LPT.2011.2131125.

[PBC+02] P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri. The GN-Model of Fiber Non-
Linear Propagation and its Applications. Journal of Lightwave Technology, 32(4):694–721, 2014-02.
URL: http://ieeexplore.ieee.org/document/6685826/, doi:10.1109/JLT.2013.2295208.

[PJ01] P. Poggiolini and Y. Jiang. Recent Advances in the Modeling of the Impact of Nonlinear
Fiber Propagation Effects on Uncompensated Coherent Transmission Systems. Journal of Light-
wave Technology, 35(3):458–480, 2017-02-01. URL: http://ieeexplore.ieee.org/document/7577767/,
doi:10.1109/JLT.2016.2613893.

[RNR+01] Talha Rahman, Antonio Napoli, Danish Rafique, Bernhard Spinnler, Maxim Kuschnerov, Iveth Lobato,
Benoit Clouet, Marc Bohn, Chigo Okonkwo, and Huug de Waardt. On the Mitigation of Optical Filtering
Penalties Originating From ROADM Cascade. IEEE Photonics Technology Letters, 26(2):154–157, 2014-
01. URL: http://ieeexplore.ieee.org/document/6662421/, doi:10.1109/LPT.2013.2290745.

[Sav05] Seb J. Savory. Approximations for the Nonlinear Self-Channel Interference of Channels With Rectangular
Spectra. IEEE Photonics Technology Letters, 25(10):961–964, 2013-05. URL: http://ieeexplore.ieee.org/
document/6491442/, doi:10.1109/LPT.2013.2255869.

[SLEF+15] C. Schmidt-Langhorst, R. Elschner, F. Frey, R. Emmerich, and C. Schubert. Experimental analysis of
nonlinear interference noise in heterogeneous flex-grid wdm transmission. In 2015 European Conference
on Optical Communication (ECOC), volume, 1–3. Sept 2015. doi:10.1109/ECOC.2015.7341918.

[SF11] M. Secondini and E. Forestieri. Analytical Fiber-Optic Channel Model in the Presence of Cross-Phase
Modulation. IEEE Photonics Technology Letters, 24(22):2016–2019, 2012-11. URL: http://ieeexplore.
ieee.org/document/6297443/, doi:10.1109/LPT.2012.2217952.

[SFP12] Marco Secondini, Enrico Forestieri, and Giancarlo Prati. Achievable Information Rate in Nonlinear
WDM Fiber-Optic Systems With Arbitrary Modulation Formats and Dispersion Maps. Journal of Light-
wave Technology, 31(23):3839–3852, 2013-12. URL: http://ieeexplore.ieee.org/document/6655896/,
doi:10.1109/JLT.2013.2288677.

[SB11] Paolo Serena and Alberto Bononi. An Alternative Approach to the Gaussian Noise Model and its System
Implications. Journal of Lightwave Technology, 31(22):3489–3499, 2013-11. URL: http://ieeexplore.ieee.
org/document/6621015/, doi:10.1109/JLT.2013.2284499.

[VRS+16] Francesco Vacondio, Olivier Rival, Christian Simonneau, Edouard Grellier, Alberto Bononi, Laurence
Lorcy, Jean-Christophe Antona, and Sébastien Bigo. On nonlinear distortions of highly dispersive opti-
cal coherent systems. Optics Express, 20(2):1022, 2012-01-16. URL: https://www.osapublishing.org/oe/
abstract.cfm?uri=oe-20-2-1022, doi:10.1364/OE.20.001022.

38 Bibliography

http://ieeexplore.ieee.org/document/6915838/
http://ieeexplore.ieee.org/document/6915838/
https://doi.org/10.1109/JLT.2014.2361357
http://ieeexplore.ieee.org/document/6459512/
https://doi.org/10.1109/JLT.2013.2246543
http://ieeexplore.ieee.org/document/6175093/
http://ieeexplore.ieee.org/document/6175093/
https://doi.org/10.1109/JLT.2012.2190582
http://ieeexplore.ieee.org/document/8025002/
http://ieeexplore.ieee.org/document/8025002/
https://doi.org/10.1109/ICTON.2017.8025002
http://ieeexplore.ieee.org/document/5735190/
https://doi.org/10.1109/LPT.2011.2131125
http://ieeexplore.ieee.org/document/6685826/
https://doi.org/10.1109/JLT.2013.2295208
http://ieeexplore.ieee.org/document/7577767/
https://doi.org/10.1109/JLT.2016.2613893
http://ieeexplore.ieee.org/document/6662421/
https://doi.org/10.1109/LPT.2013.2290745
http://ieeexplore.ieee.org/document/6491442/
http://ieeexplore.ieee.org/document/6491442/
https://doi.org/10.1109/LPT.2013.2255869
https://doi.org/10.1109/ECOC.2015.7341918
http://ieeexplore.ieee.org/document/6297443/
http://ieeexplore.ieee.org/document/6297443/
https://doi.org/10.1109/LPT.2012.2217952
http://ieeexplore.ieee.org/document/6655896/
https://doi.org/10.1109/JLT.2013.2288677
http://ieeexplore.ieee.org/document/6621015/
http://ieeexplore.ieee.org/document/6621015/
https://doi.org/10.1109/JLT.2013.2284499
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-2-1022
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-2-1022
https://doi.org/10.1364/OE.20.001022

PYTHON MODULE INDEX

g
gnpy, 33
gnpy.core, 33
gnpy.core.ansi_escapes, 33
gnpy.core.exceptions, 33
gnpy.tools, 34
gnpy.topology, 34

39

gnpy Documentation

40 Python Module Index

INDEX

C
ConfigurationError, 33

D
DisjunctionError, 33

E
EquipmentConfigError, 33

G
gnpy

module, 33
gnpy.core

module, 33
gnpy.core.ansi_escapes

module, 33
gnpy.core.exceptions

module, 33
gnpy.tools

module, 34
gnpy.topology

module, 34

M
module

gnpy, 33
gnpy.core, 33
gnpy.core.ansi_escapes, 33
gnpy.core.exceptions, 33
gnpy.tools, 34
gnpy.topology, 34

N
NetworkTopologyError, 33

P
ParametersError, 33

S
ServiceError, 34
SpectrumError, 34

41

	Introduction
	Further Instructions for Use

	Simulating networks with GNPy
	Network Topology
	Fully Specified vs. Partially Designed Networks

	The Equipment Library
	Amplifier Noise Figure Models
	Min-max NF
	Raman Approximation

	Simulation

	Installing GNPy
	Using prebuilt Docker images
	Using Python on your computer
	Installing the Python package

	JSON Input Files
	Equipment Library
	EDFA
	Fiber
	Transceiver
	ROADM

	Global parameters
	Span
	SpectralInformation

	Excel (XLS, XLSX) input files
	Nodes sheet
	Links sheet
	Eqpt sheet
	Service sheet

	Extending GNPy with vendor-specific data
	EDFAs
	Polynomial NF
	Polynomial OSNR (OpenROADM-style for inline amplifier)
	Noise mask (OpenROADM-style for combined preamp and booster)
	Min-max NF
	Dual-stage
	Advanced Specification

	Raman Amplifiers
	Transponders
	ROADMs

	About the project
	Contributing
	Project Background
	TIP OOPT/PSE & PSE WG Charter
	License

	Physical Model used in GNPy
	QoT-E including ASE noise and NLI accumulation
	The Gaussian Noise Model to evaluate the NLI

	API Reference Documentation
	gnpy package
	gnpy.core
	gnpy.core.ansi_escapes
	gnpy.core.exceptions

	gnpy.topology
	gnpy.tools

	Indices and tables
	Bibliography
	Python Module Index
	Index

